NERSC Requirements Reviews

Richard Gerber Harvey Wasserman Requirements Reviews Organizers

February 11, 2013

Requirements Reviews

- 1½-day reviews with each Program Office
- Computing and storage requirements for next 5 years
- Participants
 - DOE ADs & Program Managers
 - Leading scientists using NERSC & key potential users
 - NERSC staff

Reports From 6 Requirements Reviews Have Been Published

- Computing and storage requirements for 2013/2014
- Executive Summary of requirements
- Case studies
- Second round, for 2017 requirements, are underway – BER & HEP done, FES in March

Impact

- Highly regarded within DOE
 - Quantitative requirements
 - Documented needs from science teams
- Formed the foundation for NERSC 7 and NERSC 8 Mission Need documents
- Influencing NERSC services directions
 - e.g. application readiness, support for high-throughput computing, planning for NERSC data services
- Model for DOE Data Requirements reviews
 - "Data Requirements from NERSC Requirements Reviews," (Yelick & Gerber) document distributed at ASCR "Data Summit" in January 2013
- Next HEP report likely to be basis for Distributed Computing and Facility Infrastructures portion of HEP community's "Snowmass" Report

Production Computing Trend

Keeping up with user needs will be a challenge

Computing at NERSC

Future archival storage needs

Priority Needs Across all Offices

More hours

Progress is already limited by allocations

Science at Scale

Requirements for science at scale

Science through Volume

- High throughput workflows (e.g., for data analysis)
- Ensemble runs for V&V, statistics, & exploration

Science in Data

Data storage, I/O bandwidth, data management tools

Priority Needs Across all Offices

Standard applications, libraries & tools

- Essential for productivity
- Scientists heavily invested in standard HPC software

Highly available, stable systems

- Necessary for throughput
- Expensive to deal with job failures & workflow interruptions

Preparation for emerging technologies

- Access to testbed or prototype systems
- Assistance with application readiness

Increased data emphasis in requirements reviews

- **BER (2017 draft): "**Access to more computational and storage resources ... and the ability to access, read, and write data at a rate far beyond that available today"
- **HEP (2017 pre-draft):** "Need for more computing cycles and <u>fast-access</u> storage; support for data-intensive science, including
 - Improvements to archival storage
 - Analytics (parallel, DBs, services, gateways etc.)
 - Sharing, curation, provenance of data
- ASCR (2014): "Applications will need to be able to read, write, and store 100s of terabytes of data for each simulation run. Many petabytes of long-term storage will be required to store and share data with the scientific community."
- **BES (2014):** "[There is a need to support] ... huge volumes of data from the rampup of the SLAC LINAC Coherent Light Source (LCLS) [and other experimental facilities in BES]."
- FES (2014): "[Researchers need] data storage systems that can support high-volume/high-throughput I/O."
- NP (2014): Needs include
 - "Useable methods for cross-correlating across large databases ..."
 - "[...] grid infrastructure, including the Open Science Grid (OSG) interface [...]. "
 - [...] The increased capacity afforded by GPUs has resulted in [...] a significant increase in IO demands in both intermediate and long term storage. "

Round 2 In Progress: Target 2017

- Reviews with BER and HEP completed
 - Reports in progress
- FES planned for March 2013
- BES targeted for 2013
- Early results
 - Continued need for computation hours at or beyond historical trend
 - Increasing focus on data needs and capabilities
 - Application readiness is a major concern
 - Early access to testbeds and prototypes requested
 - Needs for porting help and robust and ubiquitous software libraries

Requirements with 6 program offices

- Reviews with 6 program offices every 3 years
- Program managers invite representative set of users (typically represent >50% of usage)
- Identify science goals and representative use cases
- Based on use cases, work with users to estimate requirements
- Re-scale estimates to account for users not at the meeting (based on current usage)
- Aggregate results across the 6 offices
- Validate against information from indepth collaborations, NERSC User Group meetings, user surveys

Tends to underestimate need because we are missing future users

http://www.nersc.gov/science/requirements-reviews/final-reports/

National Energy Research Scientific Computing Center

Requirements Reviews Methodology

- Invite representative set of ~10 case studies from each program office
 - Selected from current large NERSC users
 - Guided by PMs insight into future directions
- Together, arrive at estimate of requirements ~5 years hence for each case study
- Forecast aggregate 5-year need for each office by considering total sum of case study needs as representative of entire office requirements
- Needs for "opportunity communities" are quoted separately
 - Thus reported requirements may be underestimates

